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SUMMARY

A theoretical study was made on the simultaneous effect of the finite
rate of recombination of oxygen atoms and the fluid injection on the heat
transfer to a flat surface.

The Couette flow model was analyzed first, and then the steady lami-
nar boundary layer over a flat plate was studied by Rayleigh's analogy.

The following two major approximations were made in order to obtain
some qualitative information on the subject without excessive numerical
calculations.

1. All the property values except temperature and atom mass fraction
were considered to be constant.

2. A special linear approximation of the homogeneous reaction rate
law was employed.

It wag found that the surface catalytic recombination is more impor-
tant than the gas-phase recombination, when they are of the same order
of magnitude, as far as their effects on the heat transfer is concerned.

For a boundary layer developing from the leading edge of a finite
plate, the effect of the gas-phase recombination is to increase the heat
transfer to the plate about one-third of the way, at the most, toward the
equilibrium value from the frozen case. The calculation was based on the
condition of air at the edge of the boundary layer approximately corre-
sponding to that at a flat afterbody of a blunt nosed hypersonic vehicle.

The Couette flow analysis showed that the major role of the fluid
injection is to shield the surface from the conduction of the sensible
heat and from the diffusion of the atcms to the surface rather than to
affect the chemical reactions except when the specific reaction rates
are sufficiently low.

The injection of fluid into a boundary layer was found to decrease
the effect of the gas-phase reaction on the heat transfer for a given
relaxation time and for a given position along the surface.



INTRODUCTION

The air surrounding a vehicle in hypersonic flight usually contains
a considerable amount of disscciated radicals which are created by the
strong shock preceding the vehicle or by the extremely high friction in
the boundary layer. These radicals recombine as they flow along the
surface of the vehicle. The recombination may occur in the inviscid
stream, in the boundary layer, or at the surface of the vehicle. Any one
of these recombination phenomena can cause a considerable variation in
the heat transfer to the vehicle.

Much study has been carried out on the subject of fluid mechanics
with dissociation and recombination phenomena and a rather complete
resumeé of the work appears in reference 1.

In most of the previous studies, the processes of dissociation and
recombination were considered to occur at an extremely fast rate, so that
the air was locally in an equilibrium state. Such a consideration sim-
plifies the work greatly. It is known, however, that the chemical
reactions of dissociation and recombination occur at the extremely fast
rate only for a very limited range of flight conditions and locations
along the surface. The reactions more likely take place at a finite
rate and the air is in a nonequilibrium state.

In high-speed flight, some form of mass injection cooling of the
boundary layer has been generally recognized as an effective and a
practical method of protecting the vehicle from the surrounding high-
energy gas. The problem of fluid injection into a chemically inert
boundary layer has been studied rather thoroughly. The problem of fluid
injection into a boundary layer which is chemically reacting at a finite
rate has not previously been studied.

The major obstacle to the theoretical study of the nonequilibrium,
chemically reacting boundary layer lies in the extremely complicated
nature of the equations which describe such phenomena.

It is the main object of the present study to gain qualitative
information on the combined effect of nonequilibrium dissociation, recom-
bination, and air injection for a laminar boundary layer.

The Couette flow model is considered first. The steady boundary-
layer flow on a flat plate is then studied by Rayleigh's analogy. During
the course of the analysis, the appropriate equations are simplified, by
a series of approximations, so that they could be solved without exces-
sive numerical work.
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SYMBOLS

number of oxygen atoms, free or combined, per unit mass of fluid
constant pressure specific heat of mixture

constant pressure specific heat of ith species

binary diffusion coefficient

2
U

Eckert number, —— ="
cp(Too = TW)

x 2
2 f e~Z 3z
NG

(o]

enthalpy defined by equations (5) and (6a)

heat of dissociation of oxygen measured at a reference temperature

equilibrium constant

spécific rate constant for dissociation

specific rate constant for recombination

specific rate constant for catalytic surface recombination

distance between two plates in Couette flow

Lewis number, br
Se

mp

mA.,OO

fraction of total oxygen atoms in atomic form
number of atoms produced per unit volume per unit time

mass per oxygen atom

X

Nusselt number based on x,
)‘(Too = TW)

gL

Nusselt number based on I,



Pr

Pry

Re

Sc

number density of oxygen atoms

number density of oxygen molecules

total number density in the mixture
pe

Prandtl number, —XE

effective Prandtl number defined by equation (47b)
pressure

total heat transfer to the wall

Reynolds number, E%E
independent variable used in equation (BL)
Schmidt number, é%

absolute temperature

time

dimensionless x component of veloccilty, &é

x component of velocity

y component of velocity

constant for fluld injection parameter

net mass production rate of 1th species per unit volume

mass fraction of ith species

direction and distance along surface

Y

L
direction and distance normal to surface

dummy variable of integration

. , Lok
dimensionless parameter for catalytic surface reaction, i

: . e oV L
dimensionless parameter for fluid injection,
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[ae]

dimensionless similarity ordinate defined by equation (56)

T"T‘w’

dimensionless temperature, T
T oW

0
thermal conductivity of gas
absolute viscosity of gas
kinematic viscosity of gas, %
ratio of characteristic flow time to relaxation time, %
density of gas

relaxation time defined by equation (15)

apecific homogeneous reaction rate for Couette flow, %;-<%>
LEM° XA - <\>
MT I

Superscript

total differentiation with respect to Y 1in Couette flow and

with respect to m in boundary-layer flow

Subscripts

oxygen atoms
equilibrium state
ith species
molecules

at the wall (stationary plate in case of Couette flow)

at moving plate in case of Couette flow, and at outer edge of

boundary layer in case of boundary-layer flow



BASTC CONSERVATION EQUATIONS

Air in the present analysis is assumed to be comprised of molecular
oxygen, nitrogen, and atomic oxygen. The only chemical reaction considered
is the dissociation and recombination of oxygen in the air.

The following equations describe the behavior of the air in a two-
dimensional laminar boundary layer.

.g_f;- + aax aai;’ =0 continuity (1)

el By> . < By) momentum (2)

B, 2 ) ( 5X1> u<ay> enerey (3)

oKi o, Ky B_X;> -2 < X3 ‘rusi "
df%t +u < + v > 5 oD e + Wi diffusion (W)
where

h =inhi (5)

1

It is assumed in the above equations that the pressure gradient is
zero. The particular form of diffusion equation used here is strictly
correct only for a binary mixture of gases. The three constituents
involved here, however, are mechanically sufficiently similar so that the
diffusion equation (4) is thought to be applicable to the present case.
The term W; 1in equation (4) represents the net production rate of the
ith species by the chemical reaction per unit volume. Usually W; is
expressible as an explicit function of temperature, pressure, and mass
fractions of the species. Here it is more convenient, therefore, to have
an energy equation in terms of temperatures rather than enthalpies.

In equation (5)

T
)
hy =b/1 cp dT + hy (6a)

To
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where hg is the heat of formation of the ith species measured at the
reference temperature, To.

dh = ZXidhi + Zhidxi (6b)

i i

From equation (5)

and from equation (6a)

ohji
dhl = -ﬁ- dT = CpidT

Therefore, equation (6b) becomes

dh = cpdT + Zhid.Xi (7)
i |
where
Cp = incpi
i

The relationship (7) changes equation (3) to the following form

pcp<-g—$-+uaT+v-a-T—

R e e Bt

This becomes, with the aid of equation (4),

e Erusv Z ay< 2)e ) ZE”W“"D %‘X%ﬂ
(8




Now, in equation (9),
Wy = -Wp

and

E:hiwi = (#A - hM>'WA

1

with the a2id of equation (6a), this becomes
T
_ o]
Zhlwl = Wp f <cpA - cpM> aT + sh (9a)
i To

where M° = hX - hﬁ and is the heat of dissociation of oxygen. The
last term of equation (8) becomes, with the aid of equations (6),

)0 (8) (2 0 () (85
)@ o

In the usual temperatures considered for the oxygen dissociation and
recombination, ICPA Cpy| is very small. Equations (92) and (9b) are

combined and the last two terms of equation (8) are approximately expressed

here as
}:[%iwi - oD BX?> < jﬂ = WAAh

1

Now equation (8) becomes
3 2
pey at + 5T > <7\ g—yT-> + u@%}) - Wpth® (10) .

mh*s form of the energy equation is used in the subsequent work instead
f the original equation (3).
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CHEMICAL REACTION KINETICS

There are Lwo classes of reaction kineties involved in the present
work. One is the reaction that takes place in the gas phase (homogeneous
reaction), and the other is that which takes place between the gas and
the solid at the gas-solid interface (heterogeneous reaction). The heter-
ogeneous reaction pertinent to the present analysis is the surface recom-
bination of oxygen atoms in which the solid acts as a catalyst only.

Homogeneous Chemical Reaction

General theory.- Much study has been done on the chemical reactions
of oxygen dissociation and recombination. ©Scme of the comprehensive
analyses on the subject may be found, for instance, in references 2, 3,
and k.

In the present section, only that portion of the reaction law directly
pertinent to the subsequent analysis is explained briefly.

Consider the dissociation and the recombination process of oxygen in

air. It is known that the reaction is carried out in the fcllowing manner.
kp
O, +P & 20+ P (11)
kR

In the above equation P represents the number of the particles per
unit volume which activate the oxygen reaction. It can be Oz molecules,
0 atoms, or any other particles in the air. The following relationchip
1s derived by the law of mass action! for the reaction represented by
the equation (11)

Na = kgP <?2Ke - o%> (12)

The equilibrium constant K? is related to the equilibrium value of my
by the following equation. (See ref. 2 for more detailed analysis of
this section.)

2
Ko(T) = 2Cp —228 (13)
l-mA,e

1see reference 4 for the analysis on the law of mass action.
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Now, noting that pC = O + 20, and my = 0/(0 + 205), the expression

for the net mass production rate of atoms obtained by combining equa-
tions (12) and (13) is

_ npC
Wy = ‘%"(#A,e - mA> (1k)
where
L= Shse 1
T kR(T)CpP (i-mA,e m4> (15)

In the above analysis T 1s defined as the relaxation time.

In order for equations (14) and (15) to be of any quantitative value,
the values of kR(T) must be known. Authoritative and accurate experi-
mental values of kR(T) are yet to be found. The three major theories,
one based on collision theory, a second by Eyring, and a third by Wigner
predict kRr as the function of T1/2, T°/2, and T-1/2, respectively.
Reference 2 analyzes these three theories in detail. The author of the
reference felt that the Wigner theory is the most accurate one of the
three, and used the following equation in the numerical work.

-2
= 20 y 10-32 (molecules -1
kp(T) = 10 <—-——-—-—cm3 sec (16)

The specific recombination rate constant was varied with T3/2 in the
well-known work of reference 5 and it was different from any of those
predicted by the three preceding theories.

Some relatively consistent experimental data of kR(T) have been
reported recently in references 6 and 7. These results show the recom-
bination constant to vary with T~2 and their magnitudes fall somewhere
between those predicted bg the Wigner theory and by reference 5 for
temperature range of 2500° to 6000° K.

Linear approximation of the reaction rate law.- The expression for
Wp such as given by equation (1%) must be first incorporated into the
proper conservation equations in order to solve the proposed problem of
heat transfer across the nonequilibrium boundary layer. The simultaneous
solution of the conservation eguations (1), (2), (4), and (10) could then
yield the desired result. The conventional technique of the similarity
transformation fails to transform the conservation equations to a set of

VW W >
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ordinary differential equations. There is one exception to this statement.
The similarity transformation does work at the stagnation point of a blunt
object and the problem of heat transfer has been solved for this region in
reference 5. The difficulties involved in the similarity transformation
were analyzed in some detail in references 5 and 8.

In the absence of the similarity transformation, some sort of
perturbation type solution was suggested by several authors including
those of references 8 and 9.

A linearization of the reaction rate law is required for the par-
ticular perturbation method used in the present work.

The linear approximation is based on the following reasoning:

Consider the rate law of equation (1k4)

_ npC
iy = 2 (my e - my) (14)

Here mp e represents the equilibrium value of my, and it is a unique
function of the temperature for a given pressure.

The equilibrium constant K 1is calculated by the equilibrium
criteria and the method of the calculation can be found in most of the
standard books on thermodynamics. Once K, is found, equation (13)
yields the relationship between the equilibrium mass fraction of atoms,
the temperature, and the pressure. Sketch (a) represents this

0 === —_ /

b
ll
I
|
1

P =108atm

A

8—‘——-—————_————————

Sketch (a)
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relationship for oxygen (see ref. 10). Here the equilibrium curve is
t'irst approximated by a straight line. The variable mp e in equa-
tion (14) then can be expressed as a suitable linear function of the
temperature.

There are many straight line approximations one can make. A line
such as a-b in the sketch approximates an equilibrium line very closely
for a given pressure. Such a line, however, does not make any sense for
T, STST,and Ty ST STy where T, and T, represent the temperatures

at the outer edge of the boundary layer and at the surface respectively.

In the present work, a straight line is chosen to satisfy the follow-
ing two over-all conditions for the boundary layer:

1. The surface temperature of a vehicle is usually sufficiently low
so that the equilibrium mass fraction of atoms corresponding to the wall
temperature is zero.

(VAN

2. The agir is assumed to be in equilibrium at the outer edge of the
boundary layer.

A straight line satisfying these conditions is shown as a'-b' in
sketch (a).

According to the estimate which will be given later, the pressure at
the flat afterbody of a hypersonic vehicle is between 1073 and 10-1 atmos-
phere. For such conditions, it is seen from sketch (a) that a line such
as a'-b' which connects the values of Ty and T, usually encountered
in hypersonic flight approximates the eguilibrium lines at least in the
average.

Write equation (14) in the following form

Wy = 22wy (me - m) (17) |
where
and .
= BA e




oW w

2
(3}

Also define a dimensionless temperature

T - Ty
T - Ty

(o]

9:

Then the reaction rate law with a linear equilibrium line in relation
to the two conditions stated previously is given by

Wy = 2L m, (6 - m) (18)

In the study of the one-dimensional, nonequilibrium flow given in
reference 2, the relaxation time was first calculated from equation (15)
for either the known frozen or the known equilibrium variation of temper-
ature and atom mass fraction along a streamline. The appropriate conser-
vation equations were then solved in connection with the reaction rate
equation (14). The results of the solution for the temperature and mass
fractions were substituted into equation (15), and the new values were
obtained for the relaxation time. The solution of the conservation equa-
tions was repeated then with the new relaxation time. Reference 2 showed
that this iteration procedure converged very rapidly in most of the cases
of one-dimensional flow.

Now consider that in principle the preceding method of solution is
to be applied to the present work of Couette flow and boundary-layer
problems. The reaction rate law given by equation (18) is then linear
since the relaxation time will be expressed in terms of the independent
variables from the preceding iteration in each case.

A very similar linear form of the reaction rate law was derived in
somewhat different manner and was used in the work of reference 9. A
brief summary of the derivation i1s as follows.

The function 'WA(T,mA) for a given pressure is seen from the physical

condition to be continuous and to have at least continuous first-order
derivatives. Therefore, W, can be expanded into a Taylor series about

a point on the equilibrium line. When only the first-order terms of the
series are considered, Wp becomes

Wp = ap + amy + agl

where a's are constants.
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The dimensionless form of the above equation satisfying the two

conditions for the present study stated previously is

Wp = constant mA,w(G - m)

(19)

The comparison of equations (18) and (19) shows that the former is
in the same form as the latter one when the relaxation time in equa-

tion (18) is assumed to be constant throughout.

Finally, consider the relaxation time which is given by equation (15).
The symbol T depends mainly on the specific recombination rate kg
which was analyzed in some detail in the preceding section. It was pointed
out there that the mode of the variation of kp with respect to temperature
was rather uncertain as of now. It is stated, also, in reference 2 that
the variation of T 1in many cases is secondary to that of the rest of
the terms in the reaction rate law. Under such circumstances, the relax-
ation time was assumed to be constant at an average temperature of the
flow field and is calculated from equation (15) for various flight con-

ditions in the subsequent analysis.

Heterogeneous Chemical Reaction

Some of the comprehensive analysis on the subject of heterogeneous
chemical reactions can be found in references 3, 11, 12, and 13.

The portions of the references which are most pertinent to the

present work are explained here briefly.

The surface catalytic recombination rate is proportional to Jth
power of mass concentration of the radicals at the surface. Therefore,

the recombination rate wA.w is expressed as
2

_ J
Wp,w = kulegXp )

(20)

In the equation, %y 1is defined as the specific catalytic recom-
bination rate constant. The exponent, j, shows the order of the reaction.
In general, the catalytic recombination process of the dissociated gas,

such as oxygen, 1s known to be a first-order process.
equation (20) becomes simply

For such a reaction,

(21)

o) YUSRUSIE Y
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where k,; is a property of a particular combination of the reacting gas
and the surface whereas Py is the density of the gas at the surface.
Many metallic and oxide surfaces have much higher rate constants than

~nonmetallic ones for a given gas reaction. For instance, at the surface

temperature of YOOO K, the magnitude of ki dis in the order of 10~2 feet
per second for glasses whereas it is in the order of 10 feet per second
for meny metallic surfaces. The product kg p, usually increases with
temperature up to 1300° K or so. For glasses it increases with TW1/2
but for some metals it increases with T7.

COUETTE FLOW SOLUTION

Flow With Finite Homogeneous Reaction Rate

The flow characterized by a steady parallel relative motion of two
parallel plates containing a viscous fluid is generally known as a Couette
flow. In addition to this general concept of the flow, consider that a
fluid is being injected uniformly into the stream from the stationary
plate. The other plate then must be a porous one so that mass and momen-
tum as well as heat may pass readily through it to keep the entire system
in a steady state (see sketch (b)). Such a modified form of the conven-
tional Couette flow model has already been used in the study of mass
transfer in reference 1, and in the study of ablation and combustion in
reference 15. Consider, also, that the fluid is a nonequilibrium mixture
of atoms and molecules, and the chemical reactions of dissociation and
recombination are being carried out at a finite rate between the atomic
and molecular oxygen components of the fluid.

/—Porous moving plate

pv

Viscous reacting fluid

Coolant air (pv)

Porous stationary plote

Sketch (b)
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The conservation equations (1), (2), (10), and (&) for such a system
become, respectively,

dov
dy
du _ a au
Vo= = = = 23
it G (23)
2
ar _ a ar du
df - d (4L u) ol
oV & T Iy < ix) T <§Y> AhOwA (24)
dm W
.___A.. = _d__ _._A + _é 2
oV dy dy e dy nC ( 5)

Here the diffusion equation is written in terms of my instead of Xjp.

This can be done because mg = XA/nC and nC 1is constant as nitrogen in

the air is assumed to be chemically inert in the present analysis. As
was mentioned previously, the main purpose of the present work is to gain
qualitative information on the subject. The numerical work, therefore,
should be minimized. For this, the fluid properties, except temperature
and composition, are assumed to be constant, and a closed form solution
to the Couette flow problem is sought here. The solutions with such
assumption would still yield much qualitative information as was the

case with the work of reference 16.

In analogy to boundary-layer flow, the moving plate is assumed to
represent the outer edge of the boundary layer and the following dimen-
sionless variables are introduced here.

T - T m
U:_I_l_’ Qz__l, m:__é._, Y:'Y-
Ueo Too"TW m’A,oo L

The conservation equations (22) through (25) become by the aid of
equation (18)

PV = constant (26)

u" -~ 3y =0 (27)

-

-

MDD
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2 1
" - BPro' = - PrE(U') + = (6 - m) (28)
2
n" - 8Sem' = - = (6 - m) (29)
T1

where

1.2
T, D \T,

(o}
_l_=LAhX <>
To MT, - Ty)

It is seen that l/Tl represents the ratio of diffusion time to the
relaxation time.

The conservation equations (27), (28), and (29) are all linear and
a unique closed form solution can be obtained for given boundary condi-
tions.

The boundary conditions applied here are based on the following
physical conditions.

1. The air at the moving plate is in equilibrium at the plate
temperature which is sufficiently high to produce a large amount of
dissociation.

2. The stationary plate has either a zero, a finite, or extremely
high catalytic rate constant for atom recombination, and its temperature
is sufficiently low that the equilibrium mass concentration of oxygen
atoms 1s zero.

3. Air is injected into the stream uniformly from the stationary
plate, and the injection rate is given by ove.

The boundary conditions corresponding to the above-stated physical
conditions are as follows:
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at Y = 0 (stationary plate)

Uy, =0 (30)
Oy = O (31)
m;' = Sc(y, + d)my, as k, 1is finite (32a)
m; =0 as ky is extremely high (32p)
where

at Y =1 (moving plate)

Uw = 1 (33)
6, = 1 (34)
m, =1 (35)

The boundary condition of (32a) is derived by meking the following
relationship of mass balance for atoms dimensionless at the stationary
plate.

AX g =
eD A S DVXA,w - pkWXA,w
or

dm
D | = - =
P (; > pvm,, PRylhy

AW W >
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The left side of the equations represents the net rate of atoms
arriving at the stationary plate whereas the right side represents the
net rate of disappearance of the atoms by the catalytic reaction and is
given by equation (21).

When k., and therefore 7, becomes extremely large, my in equa-
tion (32a) must go to O since my' is finite. Equation {32b) is there-
fore valid when the recombination occurs extremely fast at the surface.
When the stationary plate is totally noncatalytic, the relationship (32a)
is valid with 7 = O in the equation.

The solutions of equations (27), (28), and (29) satisfying the
boundary conditions (30) through (35) are obtained as follows:

dY

-1
u(Y) = &= (36)
e8 -1
D.Y D 28Y
6(Y) = C, + CBe 2" 4 cssseDsY + C4Bge at + Bse (37)
DY DY D,Y 28Y
m(Y) =C, + Ce © +Cge 2 + Che © + Age (38)

The parameters in the solutions (36) through (38) are given in appendix A.

The total heat transfer to the stationary plate is obtained as
follows:

For a finite Yw

g =2\ %)w + AhokprA,w (39)

Making the above equation dimensionless yields

= ab
NuL

X, A’
= 9! + ——=2 . Pryymy (4o0)
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For an extreme 7y

= (4L o (Za b1
A d’y>w+&pD<dy>w (1)

Making the equation dimensionless yields

‘ O
Nup, = 08 + —Baef®  pop (k)
cp(TOO - Ty)

Flow With Frozen Homogeneous Reaction

There are two limiting cases to the problem. They are the cases
with the frozen and the equilibrium homogeneous reactions, respectively.
The equations and the solutions become much simpler for these cases.

Consider first that the gas-phase reaction is frozen. This is the
limit approached as the relaxation time becomes infinitely long compared
to the diffusion time. Equations (27), (28), and (29) become

gt - 8U' =0 (27)
6" - 8Pre' = - PrE(U')Z (43)
m" - 8Sem' = 0 (4k)

The solution of these equations is of course very simple and the
application of the boundary conditions (30) through (35) to the general

solution yields

P 2
8] R =s)
o(Y) ={1 + s <55:1> e S

28%(Pr - 2) SOFT 4

=
PrE <: 5 )
5.
+ ___.ji_jﬁi.(e25Y - 1) (45)

25°(Pr - 2)

OV W I

-
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B&ScY
Bge + 3S¢c - B
m(Yy) = S ° for a finite 7y, (46a)
d5c - Bg + BseSSC

dScY
n(y) = e -1 for an extreme 7y (L6b)

eBSc -1

The values 6y, my, 6%, and m§j can be obtained directly from the
above equations, and substitution of these values into the appropriate
equations (40) and (L2) yields the desired quantity Nuj, for the case of
frozen flow.

Flow With Equilibrium Homogeneous Reaction

Next, consider that the gas is locally in equilibrium at the pre-
vailing condition of the locality. This implies the following facts.

for diffusion and convection of the atoms. The reaction rate at a
locality, therefore, is controlled completely by the rates of diffusion
and convection of the atoms to and from the locality.

1. The relaxation time is very short coupared to the time required

2. 'The relationship between the temperature and the mass fraction
of atoms at each point in the fluid satisfies the equilibrium criteria.

In accordance with the above condition 1, an expression is obtained for
(1/72)(6 - m) in terms of m' and m" from the diffusion equation (29),
and it 1s substituted 1nto equation (28). Next, in accordance with
condition 2, m' and m" in the resulting equation are set equal to @'
and 6", respectively, since m(Y) = 6(Y) when the gas is in equilibrium.
There then results:

o}
-1
6" ~ BPr 6" = - ° e 20Y (472)
Mm%,
1+ Ie ———uu2
CP(Tw - TW)
where
Ah X
1+ ( Ay T )
Pro = R (470)
Ah‘ XA ﬂ’m

Ll T, J’Ew> \31?5/
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The particular form of the effective Prandtl number shown above was
first derived and was discussed in reference 9.

It is seen that Pr, = Pr vhen Ie = 1.

The solution of equation (47a) is again very simple, and is

B (e20-1) - 1
Q(Y) - 9(6 l) <eSPI‘eY - l) + B’7(€28Y _ l) (L}S)
1 - eSPre
where

5 2

PrE <—e-1or:-i>
A - M°X |

28°%|1 + e ———222 | (2 _ Pry)
CP(TOO - Tw)

The heat transfer to the stationary wall for this case 1s independ-
ent of the surface catalytic conditions and 1s given by:

(@)
M X
M, = {1+ le ——2—| oy (49)
cfp(Too - TW)

It is seen from the particular linear reaction rate law used here that
6(Y) = m(Y) when the fluid is in equilibrium.

STEADY BOUNDARY-LAYER SOLUTION BY RAYIEIGH'S ANALOGY

Genera. Solution

It is known that the steady boundary-layer solution for a solid
surface can be approximated by solving for the transient boundary layer
on the surface starting impulsively. Such an approximation is called
Rayleigh's analogy-.

The analogy was somewhat modified in reference 17 to include the
effect of mass injection at the surface.

In the present work, the principle of Rayleigh's analogy is extended
to include the effect of energy transfer and chemical reaction as well
as that of mass transfer.
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The major simplification is achieved in Rayleigh's approximation by
using the terms with o/dt which is linear instead of the term with
u(3/dx), which is nonlinear, in the original momentum equation.

The specific problem solved here follows: Consider a porous flat

plate which is infinite in size, and is in contact with the fluid above
it.

Initially, the temperature of the fluid and the plate is at uniform
value of T, and the mass fraction of atoms in the fluid is at the
equilibrium value of XA,m‘

v v : B
\ w w WVW
Porous wall

Sketch (c)

Now consider that the following conditions are imposed on the plate
suddenly at zero time. (Sketch (c) illustrates the problem.)

1. The plate is started toward the left at uniform velocity of
-uy,e This is the same as the fluid moving toward the right with wug.

2. Temperature of the plate is lowered to Ty.

3. Fluid injection is started uniformly over the whole plate and
is decreased in accordance with the relationship v = vo%Jt thereafter.
Here vy is a constant.

After the completion of the transient solution, the analogous steady
boundary-layer solution is found by setting

t =u% (50)
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The pertinent conservation equations are obtained from equations (1),

(2), (4), and (10) for the constant fluid properties as follows:

ay
du, , du .,
BrvE=v— (52)
ot v oy dy®
N e
or AT _ AT du o
pPC -é_-g+v—a—y—)_ %‘é)“’(‘a—; -&WA (53)
-—A-+vihi‘l=1)§ni+-l_w (54)
5t S/ % Sy2 Tnc A
The following dimensionless independent variables are Iintroduced
here.
_t
£ = = (55)
=4 (L -
n '\/_\7 2\/-{;- VO> (56)

The dependent variables are made dimensionless as in the Couette
flow case as

T - T m
U = l » 9 ——_—'—"W K} m = —————A
Voo T, - Ty WA oo

Now the conservation equations are transformed to the subsequent
set of dimensionless equations by the use of the new dimensionless
dependent variables, and by changing the independent variables +t and y
to the new ones £ and 7n. The expression for Wp 1s obtained from the
linear reaction rate law of equation (18).

L

1t ;rl t —
cut e lu =0 (57)
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" 1% 2, Loy, Faud 8
<1+Pr> n2+28n+4 (ur) §[8§+CP(TOO_TW) (6 - m) (58)
2

The analysis of the nonequillibrium boundary layer i1s much more
complicated than that of the Couette flow and involves a substantial
amount of numerical work. Here, therefore, only two extreme surface
conditions are considered in order not to complicate further the analysis
of the nonequillibrium boundary layer. The two surface conditions are the
noncatalytic and the extremely catalytic ones. The method of treatment
of the finite catalytic efficiencies in connection with a frozen boundary
layer is found in references 11 and 13. It is seen that the treatment
given in the references can be incorporated into the present work of
nonequilibrium boundary layer, but with much added complexity.

UN U D

The physical conditions stated at the beginning of this section imply
the following boundary conditions for the present problem.

v
At T]=':/%) (y =0)

Uy =0 (60a)

ve = 72 (60p)

6w = O (61)

@%) - o8¢ <%>mw =0 for k, =0 (622)
W

m, =0 for extremely large ky (62v)
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Up =1 (63)
B, =1 (64)
m, =1 (65)

The boundary conditions (62a) and (62b) came from the atom mass balance
at the wall, as was discussed in the previous section on Couette flow.

The injection rate at the surface is given by the dimensionless parameter,

VO/V_Z The quantity VO/JV is equal to qu€7v, and the relationship,
t = x/um, leads to the expression

JRe (66)

Thus the dimensionless injection parameter used here is equivalent
to the conventional Blasius injection parameter -fy.

The momentum equation (57) is integrated readily to satisfy the

boundary conditions as
Vo
rf + T | —=
erf(n) + er <""v>

1+ erf VO>
CA\TT

The term in equation (58) which includes (U')° can be rewritten as
a function of 7 with the aid of the solution (67). The solutions of
the remaining equations (58) and (59) are obtained here by the following
method of perturbation.

U(n) = (67)

Let

o(t,n) =Z§n9n(ﬂ) (68)
=0

a(5,m) = ) thmg(n) (69)
n=o

oW W =



N W =

Y,

=~

In order that the present technique of perturbation be successful,
04 and my; must be functions of 7 only. It will be seen in the follow-
ing perturbed equations that they are indeed functions of 1 only.

When the above series are substituted into equations (58) and (59),
and the terms with the same powers of £ are equated, the following set
of perturbed equations is derived.

1 1" LI ] E _21']2 -
EGO + §GO + ] . o = e 0 (70)
1 + er W
e Ee (71)
O
1w, N DRV &
— " + —p! -9, = —22 (9, - 2
lLPr 1 2 1 1 CP(Too _ TW) ( (o] mO) (7 )
omtaml -my s - (00 - mo) (73)
X, Mm°
1 1 N 4 _ A,
— 0 -0 -9, =—222____ (g9, - i
bpr 2 272 2 ep(Ty - Ty) (83 - my) (74)
1, n _
E—mé‘*‘gmé- an—— (Ql—ml) (75)
. [ ] - L] L] [ ] * L] L] . L] L ] é . [ ] . .
X, _Oh
1 1 N _ A,o0
=08 + 29 -nop = ——2—— (6py - Mpy_q) (76)
pr nT 3% n CP(Too ~ Tw) n-1 n-1
Lo+ Jnt - mmy = - (6n-y - myoy) (77)
Egg'mn 5 Tn - Mn n-i n-1

The boundary conditions for the perturbed equations must be such that the
original functions (68) and (69) for 6 and m should satisfy the boundary

|
|
It is seen that each of the above perturbed equations is linear.
conditions (60) through (65). Such boundary conditions are as follows:
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For the zero-order perturbed equations (70) and (71)

o,w =0 (78)

mh - 2 (J2) Semg =0 Tor Iy =0 (79)
mg 4 = 0 for k, extremely large (80)
00,00 = + (81)

mg o, = 1 (82)

For the nth perturbation excluding n = 0

fn,w = O (83)

: =2 = - 8l
m - 28e (75 ) M,y =0 for Ky = 0 (8L)
mpy,y = 0 for k, extremely large (85)
On,0 = O (86)

mn,oo = O (87)

The following describes, briefly, the main points of the method used
in the sclution of the eguation. The details appear in appendix B.

The zero-order perturbed equations (70) and (71) are first integrated
to yield

oW W =
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erf(VPrn) + erf <«/-P_r_§_9-_

8o(n) = — /;FP? :j,_%> o+ [l : :i;E<vo>] [1( -1, <\/__>:|
e T = o -5 (5] )

where
I,(n) =\/ﬁne'Pr22erfOf§_:_§; z)dz (89)
0
\/;—g_—- [erf(mﬂ) + erf @Ez\j__j 28c < > —SC(VO/\I—)
mo (N gm0 = ——

3

Vo _l—_ ﬂ -SC(Vo/'\/T
IASc [é + erf Q?gzid__] + 55e Vo e (90)

erf(NSc 1) + erf Q#Sc ——>

mo( e, & o (91)

1+ ext <Js_ﬁ>

Next, Lhe general perturbed equations (76) and (77) for n # O are solved
as follows.

Consider the homogeneous parts of equations (76) and (77) which are

E@g+—g—9ﬁ-n6n=0 (92)
S+ =0 (93)
fse 2™ Mn ’

- In general, there are two independent solutions for each of the above

homogeneous equations. Two soluticns, one for each of the equations, are
obtained here in the polynomial form as
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n
2z
Foa(n) =1+ ) sz (94)
k=1
where
o = n(n -1)n -2) .. .(n-k+ 1)
NIES)
(2%) YPr
and
n
2k
Hy,n(n) =1 "'Zbekn (95)
k=1
where
b = n(n-1)(n-2)...(n-k+1)
ok =
e,
The particular solutions H@ and Hp p Trepresent one of the two solu-

tions for equations (92) and (93), respectlvely

The analytic solutions (94) and (95) of the homogeneous equations
are exploited here, and the appropriate Green's functions are constructed
to satisfy the homogeneous boundary conditions (83) through (87). The
complete solutions for the perturbed equations (76) and (77) satisfying
the proper boundary conditions are then obtained in the following integral
forms:

Xp,h o Prz2
6n(n) = 4pr mé Gg,n(M,2)[6n_1(2) - my_y(z)]e” ~ az  (96)
G
o 2
m(n) = - 48c | Omon(n,2)(6nes(z) - myy(2)1e%% 0s  (97)
Vo
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where the G's represent the Green's functions and are given by

When

C‘m,n(

r

1

oy, M)an ool 2)
Ge,n(ﬂ,Z) = ﬁ
L an el M)am ,3(2)
I (oo) + Ie <Y..O_>
LQ,n YD A\JT,
kg = 0
f = - B M) e 2)
In,n() + In,n <ﬁ> + Cp
Ns2) =<
L — Bn,m(n)ﬁn,w(z)
-
(Zm,n() + Ing,n <\]—9-‘7) + Cp

and wvhen ky —»> o

Gm,n(T]:Z) =<

where

-

Bn,w'(n) ,oo( z)

In,n(e) + Im,n < >

1

Bn,oo( n)Bn,w( Z)

LIm,n(°°) + In,n <:’“‘%>

an,w(n) = He,n(n)[le,n(n) + Ig,n G%]

for

for

for

for

for

for

N
w

A

N
nv
=J

N
A

w

A
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> (98)

\ (598

> (99b)

(100)



32
ool M) = = He,n(n)[le,n(oo) - Igm 3-%] (101)
Bn,w(n) = Hm,n(n)[lm,n(n) + In,n G%) + cm] for k, = 0 (102a)
Bn,wln) = Hm,n(n)[lm,n(m + In,n Q—%] for ky =w  (102b)
1) = = () [T, = Tam,n(0)] (103)

1
Cp = = (10k)
n Vo SC(VO/\]V)Q Vo Vo ' Vo
Tl ) ° o Bl 3) - -

N dz
I, (n) = . (105)
0, N J [He’n(z)]ZePrZ
and
N z
Im,n(ﬂ) =f d (106)

The heat transfer to the surface is given by

g =1 @% for Ik = O (107)
W

and

q=A g-?-> + MCpD @_;Eyﬁ-> for k, extremely large (108)
Y w
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Making the above equations dimensionless yields, respectively,

= %.<§%>w for ky = O (109)

and

1; = % [<$ﬁ> CP(T e <éﬁi>} for ky extremely large(llo)

In the derivation of the relationships (109) and (110), the analogy
to the steady boundary layer was made by setting t = x/uoo and the
Nusselt number was defined as qx/% Tw-Tyw)+ The values of (ae/an and

(dm/dn),, necessary in the evaluation of Nu/NRe are obtained from the

series (68) and (69) as

%) . vy
&), - % ()
n=o

&), -2 (3 (12

Range of Solutions Obtainable

It is obvious from the series representations of the solutions given
by equations (68), (69), (111), and (112) that the range of ¢ for which
the solutions can be obtained by the method of perturbation is quite
limited. The exact range of & for convergence of the series is not
known. It is seen, however, that £ can not be much above 1. The
symbol £ was defined as t/T and it is the ratio of the flow charac-
teristic time to the relaxation time. The boundary layer is practically
frozen wvhen €& < < 1, and it is in equilibrium when £ > > 1. When
£ = 1, the boundary layer is definitely in nonequilibrium and the finite
reaction rate must be considered. The main purpose of the present qual-
itative study is accomplished if the solution can be obtained for ¢ = 1.
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It is worthwhile at this point to discuss the actual range of t/T
which may be encountered by a boundary layer of the sort considered here.
The pressure at the stagnation point of a blunt body traveling at hyper-
sonic speed in the range of 100,000- to 200,000-feet altitude is found to
vary approximately between 10"2 and 1 atmosphere according to reference 18.
At the region of a vehicle considered here where the pressure gradient 1is
negligible, the pressure is very much less than that at the stagnation
point. If it is assumed that the pressure in the boundary layer consid-
ered is less than that at the stagnation point by an order of magnitude,
it would be between 10™2 and 10~1 atmosphere.

Figure 1, which is obtained directly from figure 8 of reference 2,
shows the variation of the product Tp with respect to the temperature.
The relaxation times were calculated with the aid of Wigner theory
(eq. (16)). The surface temperature of a vehicle is usually less than
1,000° K. Then for an assumed average temperature of 3,OOOO K for the
boundary layer, the relaxation time can be approximately estimated to be
between 10-3 and 1 second for the pressure range of 10-3 to 1071
atmosphere.

Now consider the ratio t/t = X/Tum. The distance of interest along
the plate is usually not more than 10 feet. The magnitude of u, 1s in
the order of 10% feet per second. Then for these values, the range of
¢ becomes between 1073 and 1. Therefore, the solutions of most interest
here seem to be those for ¢ < 1, and these solutions can be obtained by
the perturbation technique.

Frozen Boundary lLayer

The boundary layer becomes chemically frozen as the relaxation time
becomes infinitely large in comparison to the flow characteristic time.
The ratio £ +then approaches 0, and the energy and diffusion equa-
tions (58) and (59) become identical to the zeroth perturbed equa-
tions (70) and (71), respectively. Therefore, the solutions given by
equations (88) through (91) represent the solutions for the frozen case.

Equilibrium Boundary lLayer

The physical implications concerning the gas in a local equilibrium
were discussed in the sectlon on Couette flow.

The following equation is derived by combining the two conservation
equations (58) and (59)

oW W >
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2
L . —I —e @ =0 (113)
Lprg 2 XA, o0 Vo
|l + ——2=—_I|1L + erf | —
CP(TOO-TW) W

This equation is in the same form as equation (70) whose solution is
equation (88). Remembering that 0(7n) = m(n) when the fluid is in
equilibrium, the 6(n) and m(7n) profiles can be obtained directly from
equation (88) by replacing Pr by Pre and E by

E
O
NV
Cp( Too'TW)

The heat transfer to the surface is given by the following expression
for all catalytic conditions of the surface

Nu _ 1 XA, o L
== |1+ Ie —22— 10 11k
N [ ’ cp(Tm-Tw)] W ()

NUMERICAL RESULTS AND DISCUSSION

Couette Flow

It is seen, from references 3, 5, and 12, that the values of 0.71
and 1.4 are fair estimates for Prandtl and Lewis numbers, respectively,
in hypersonic heat-transfer work. These property values are used in the
numerical calculations of the present analysis. The values of two addi-
tional parameters must be specified before the numerical elaborations
can be started. They are the Eckert number and the parameter
XA’mphO/cp(Tm—Tw). The Eckert number is defined as uwg/cp(Tm- ;) and
it represents the ratio of the heat-transfer potential due to kinetic
energy to that due to the sensible thermal energy. The parameter
XA’«pho/cp(Tm-Tw), on the other hand, represents the ratio of the heat-

transfer potential due to the chemical energy to that due to the sensible
thermal energy. Here, the following values are used which are thought to
be reasongble for the air which passed through a shock strong enough to
dissociate the oxygen completely.

PrE = 2
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XA,

Cp( TOO—TW )

Figures 2(a) and 2(b) show the typical variations of heat transfer
calculated for the two fluid injection rates of © = O and ® = 2, respec-
tively. The expected trend of the increasing heat transfer with homo-
geneous and heterogeneous specific reaction rates is evident. It 1s seen
in the figures that the heat transfer varies considerably with respect
to the specific homogeneous reaction rate, l/Tl, for the lower catalytic
efficiencies of the surface. The maximum variations between the frozen
and the equilibrium reactions depend mainly on the parameter
XA,“AhO/cp(Tw-Tw) for a given fluid injection rate. The larger the
parameter the greater is the magnitude of the variation. The gsensitivity
of the heat transfer with respect to the specific homogeneous reaction
rate decreases quite rapidly as the catalytic surface efficiency is
increased, and it becomes practically invariant to l/Tl at the high
catalytic recombination rates.

The heat transfer 1s very sensitive to the catalytic condition of
the surface up to very large values of l/Tl- Heat transfer becomes
independent of the surface catalytic condition as the gas approaches
locally the equilibrium states.

The relative sensitivity of heat transfer with respect to the spe-
cific heterogeneous and homogeneous reaction rates can be seen in the
figures. For & = J, for instance, it takes approximately a 50-fold
increase in the surface catalytic parameter 7y 10 raise the Nusselt
number from 3 to 4.7; whereas, it takes over a 1000-fold increase in the
specific homogeneous reaction rate, l/Tl, to do the same. Heat transfer,
therefore, in general, is much more sensitive to the surface catalytic
condition than the gas-phase reaction rate. This is because the reaction
which occurs at the surface affects the heat transfer more directly than
that which takes place in the gas stream away from the surface.

Figure 3 shows some typlcal velocity profiles for Couette flows.

The effect of the specific gas-phase reaction rate on the chemical
state of the gas itself is seen in figure 4. This figure is for the
case of % and 7, equal to O. It is seen that the gas approaches an
equilibrium state, as is evidenced by the decreasing values of |§ - m|,
as the specific reaction rate is increased.® The gas further away from

“Note that, from the particular linearized rate law of equation (18)
used here for the gas-phase reaction, 6(Y) = m(Y) is an indication of the
equilibrium state in the gas. Also (6-m) represents the rate of the
nonequilibrium reaction since the relaxation time is assumed to be
constant.

W w r
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the stationary wall reaches the equilibrium state first then the gas near
the wall approaches it rather slowly. The nonequilibrium condition of
the gas adjacent to the wall persists even for very large values of l/Tl-

The added effect of finite catalytic surface recombination rates is
seen in figure 5. For the near frozen gas-phase reaction, the condition
of the gas at the wall is immediately brought closer to the equilibrium
state as the heterogeneous chemical reaction 1s now allowed to proceed
at a finite rate at the surface. This also changes the shapes of the 6
and m profiles through the gas. The surface catalytic reaction, there-
fore, affects the homogeneous reaction when the gas-phase reaction is very
slow. It is seen, however, that the gas-phase reaction rate comes to
depend mostly on its own specific reaction rate, except near the wall, as
the specific homogeneous reaction rate increases. A comparison of fig-
ures 4 and 5 shows that even for a relatively low homogeneous reaction
rate of 30, the region of influence of the catalytic reaction on the gas-
phase reaction does not extend beyond Y = 0.4t. At a higher gas-phase
specific reaction rate of 200, the region of the influence is limited
practically to very adjacent gas layers. It 1s important, however, to
notice that the influence of the surface condition persists near the wall,
and it has a nonnegligible effect on the heat transfer even for the rela-
tively high gas-phase reaction rates (see fig. 2).

Figure 6 shows the 0 and m profiles for an extremely catalytic
wall. The gas at the wall is now in equilibrium because of the infinite
rate of reaction. The degree of departure from the equilibrium state for
the gas away from the wall is still mainly dependent on the homogeneous
specific reaction rate. It is seen that the catalytic surface reaction
with such a large value of 7y, however, has a distinct effect on the
entire flow field. The catalytic surface as an infinite sink drains the
atcoms of f the gas stream so fast that the concentration of atoms is below
the equilibrium values throughout the gac for all the finite homogeneous
reaction rates. The reaction of disscciation, therefore, takes place in
the gas as it approaches the equilibrium state instead of the reaction
of recombination. This effect on heat transfer is seen in figures 2(a)
and 2(b). The dotted lines in the figures represent the conductive part
of the total heat transfer which is represented by the solid lines. The
differences in the ordinate between the two lines then represent the heat
transfer due to the atom recombination at the stationary wall. The heat
transfer to the wall is by conduction alone when 7y = O. For 7, =25,

the recombination is the predominant reaction in the gas phase so that
the conductive part of the heat transfer increases steadily as l/Tl is
increased. The heat transfer due to the catalytic reaction at the surface
is decreased at the same time. Only dissociation, on the other hand,
takes place in the gas phase when 7, = «, producing more atoms as the
homogeneous reaction rate is increased. The heat transfer due to the
surface recombination is increased and the conductive part is decreased

as l/Tl beecomes greater. Finally, for a sufficiently high but a finite
catalytic efficiency of the surface, such as for 7y = 50, it is seen
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that the conductive part of the heat transfer decreases first and then it
increases as the gas-phase reaction is continually increased. This
phenomenon comes about as the predominant reaction in the gas phase is
shifted from dissociation to recombination. This situation is seen more
clearly from figure 7. Here the parameter (6 - m), which is directly
proportional to the local homogeneous reaction rate, is plotted against
Y for ® = 0J. The chemical reaction in the gas phase is predominantly
that of dissociation for 1/t, = 30. When 1/7, is increased to 200,
on the other hand, most of the gas is in equilibrium except near the wall
where the process of recombination is taking place. It is seen in fig-
ure 2 that these effects of 7, and 1/7, on the 6 and m profiles
through the gas do not have any pronounced effect on the total heat
transfer.

The particular relative occurrences of dissociation and recombina-
tion in the gas phase and the particular mode of the partition between
the two parts of the heat transfer depend largely on the particular
boundary conditions and the reaction rate law used.

The added effect of the fluid injection is seen in figures 8 through
12,

Figure 8 shows the variation of heat transfer with respect to the
injection parameter O for six different combinations of l/—rl and Yy.
It shows that a substantial decrease in heat transfer is accomplished by
fluid injection in all the cases.

It is seen from figures 8(a) and 8(d) that when either of the two
reaction rates, homogeneous or heterogenecus, is very slow the increase
in the other results in a greater decrease in heat transfer for a given
fluid injection rate. The similar conclusion was drawn in reference 19
from the analysis of a frozen boundary layer at the stagnation region of
hypersonic vehicles. The reason for this phenomenon can be seen, for
example, from the comparisons of figures 4 and 9, and 5 and 10, respec-
tively. The first two figures show the 6 and m profiles when the
catalytic reaction at the stationary wall is frozen; whereas the last
two figures show those when the wall has a finite catalytic efficiency.
A comparison of figures 4 and 9 shows that the fluid injection plays a
substantial role in bringing the fluid closer to an equilibrium state
near the wall especially for the lower values of l/Tl. The fluid
injection, therefore, considerably decreases the recombination process
near the wall., Comparison of figures 5 and 10, on the other hand, shows
that this role of the fluid inJjection is not so pronounced as the surface
becomes more catalytic since the 7, of the surface then dominantly
influences the region near the wall. The comparisons of the figures
also show that the homogeneous reaction away from the wall is not altered
to any great degree by the fluid injection. From these analyses, it is
seen that, excluding the case for either a near frozen homogeneous or a
near frozen heterogeneous reaction; the main effect of fluid injection
is to shield the surface from the cornduction of sensible heat and from

-
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the diffusion of the atoms to the surface. This phenomenon is seen
clearly in figure 11. As the fluid injection is increased, the chemical
reactions are not changed appreciably, but the temperature gradient and
the mass concentration of atoms at the wall are decreased steadily. One
preset condition of the problem must be remembered at this point. The
problem is solved and analyzed here assuming that the relaxation time for
the gas-phase reaction is uniform throughout the flow field. The
relaxation time, in practice, varies with the temperature, and the effect
of the fluid injection on the relaxation time via decreased temperature
must be incorporated into the problem also.

Boundary-Layer Flow

The property values and the Eckert number used for the numerical
examples of the boundary-layer flow are the same as those used for the
Couette flow, The parameter XA,mAhO/cp(Tw-TW) is considered to be unity

here, and it is different from the value of 2 used for the Couette flow

case. This gives a little simplification in the the numerical
computations.

It is seen in the preceding analysis of the Couette flow that the
heat transfer is independent of the homogeneous reaction when the surface
is extremely catalytic. The numerical computations are, therefore,
carried out here for the cooled, noncatalytic surface only.

Figure 12 shows some of the typical velocity profiles through the
boundary layer.

The main numerical work of the present problem lay in the evaluation
of the integrals, I,, Ig,n, and Im,n for n f 1,3 and the integrals for
fn and my. It is seen from the expressions (89), (96), (97), (105), and
(106) that all the integrals involved are actually quite straightforward.
It is also seen from the analysis that the integrals Ig n and Iy, need
to be evaluated only once for each n, and the same integrals can be used
for all fluid injection rates considered.

The calculation of the perturbations through the fourth or fifth
order ones yielded sufficiently accurate values of heat transfer for ¢
up to l.2.

Figure 13 shows the deviations of the heat transfer from the frozen
cases for different values of E. The deviations are shown as percent-
ages of the maximum heat-transfer variations between the frozen and the
equilibrium cases for three different injection rates. It is seen in
the figure that the deviation of heat transfer from the respective frozen

SThe analytic expressions for Ig,1 and Im,l are obtained in
appendix B.
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case 1s lessened for a given ¢ as lhe injectlon rate is increased. This
implies that, for a given relaxation time, the effect of the atom recom-
bination on the heat transfer to the surface at a given distance down-
stream from the leading edge becomes less pronounced as fluid is injected
into the boundary layer.

Figures 14, 15, and 16 show the temperature and the atom concentration
profiles through the boundary layer for the same three fluid injection
rates as before., It is seen in the figures that the atom concentration
is decreased near the wall as the fluid is injected and it brings the
fluid closer to the equilibrium state there. The recombination rate is
therefore decreased considerably near the wall by the injection at least
for ¢ < 1.2. This seems to be the main reason for the decreased effect
of a given relaxation time on the heat transfer when fluid is injected.

As £ is increased much beyond 1.2, it seems reasonable to think,
from the analysis on the Couette flow, that the reaction rate will becocme
practically independent of the fluid injection, and it will be predomi-
nantly controlled by the relaxation time.

It was estimated in the previous section "Steady Boundary-Layer
Solution by Rayleigh's Analogy" that the range of £t which was of most
interest here was between 103 and 1. Assuming, then, that this esti-
mation is not too far off, figure 13 shows most of the probable range of
departures of heat transfer from the frozen case. According to the figure,
then, the maximum probable departure in heat transfer 1s only about
35 percent of the total variation between the frozen and the equilibrium
cases. It is also seen, from the general slopes of the deviation curves
of figure 13, that it will take unreasonably long distances for the fluid
to reach near equilibrium state.

CONCLUDING REMARKS

The simultaneous effect of the finite rate recombination of atoms
and the fluid injection on the heat transfer to a flat surface was
studied theoretically.

The study was made for a Couette flow and for a steady boundary-layer
flow which was approximated by Rayleigh's analogy.

The major approximations involved in the analysis were as follows:

1. All the property values were considered to be constant except
the temperature and the composition of the gas.

2. Nitrogen in air was assumed to be chemically inert and only the
oxygen dissociation and recombination were considered.
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3. Air at the moving plate for Couette flow and at the edge of the
boundary layer for Rayleigh's problem was assumed to be in chemical
equilibrium.

L, 4 special linear approximation of the homogeneous reaction rate
law was made.

A closed-form solution to the Couette flow and a semiclosed form
solution by perturbation technique to the boundary-layer flow were derived
with the above-stated approximation.

For the Couette flow, the numerical calculations of heat transfer to
the cooled surface with finite catalytic efficiencies were made for
different homogeneous reaction and fluid injection rates. In the numeri-
cal calculation for the boundary-layer flow, the cooled surface was
considered to be noncatalytic throughout.

The major results of the analysis are as follows.

Couette Flow

When either onc of the two reaction rates, homogeneous or hetero-
geneous, is extremely high, heat transfer is practically independent of
the other reaction rate. On the other hand, when both of the reaction
rates are of similar magnitude, it is seen that heat transfer is more
sensitive to specific surface reaction rate than the specific gas-phase
reaction rate.

The homogeneous and the heterogeneous reaction rates are mainly
controlled by the relaxation time and the specific catalylic recombina-
tion rate, respectively, and they are practically independent of the
fluid injection rate except for the cases of very low specific reaction
rates. The major role of fluid injection is therefore to shield the
surface from the conduction of sensible heat and from the diffusion of
atoms.

Boundary-Layer Flow

For a boundary layer developing from the leading edge of a finite
plate, the effect of the gas-phase recombination 1s to raise the heat
transfer to a finite plate about one-third of the way, at the most,
toward the equilibrium value from the frozen case. This estimate was
based on the condition of air at the edge of the boundary layer approx-
imately corresponding to that at a flat afterbody of a blunt nosed hyper-
sonic wvehicle.
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The surface catalytic efficiency, on the other hand, may increase
considerably toward the leading edge since the surface temperature there
tends to be higher in practice and the catalytic recombination can cause
the heat transfer to approach that for the equilibrium value.

The injection of fluid intoc the boundary layer decreases the effect
of the gas-phase recombination on the heat transfer for a given relaxa-
tion time and position along the surface. It should be remembered here
that the relaxation time depends considerably on the temperature in
practice.

Finally, all the remarks made here must be Iinterpreted only within
the limitations imposed on the entire work by the approximations stated
previously.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 20, 1959
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APPENDIX A
PARAMETERS FOR COUETTE FLOW SOLUTIONS (36) THROUGH (38)

The D's (D2, D5, and D4) in the solutions are the three unequal and
real roots of the algebraic equation

D3+ AD® + AD + Ay = 0

The other constants are given as follows:

A,

- £
dPr P + ¥>

= [ 1 1 2
A2 = T—l- + ;F; - PI‘SC>

(1. 1)
A, = BPr | = +
3 \Tl Tole
2
- 5 V(X
e () ()
Ag = Ay
S 25(85° + HA15° + 24,0 + Ag)
2
B2 = l + SSCTlDz - T1D2
Bz = 1 + 8ScT,Ds - T;D3"
2
By = 1 + 8SeTyDy + 11Dy
By = Ag(1l + 28%8cry - L1 82)

= Sc(7y + B)

o
0
I
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The constants C are obtained from the following sets of four linear
algebraic eguations shown in the matrix form:

For a finite 7y

.
D D P, 7 (- - n
1 e® e ° e * CIW 1 - A5e26
1 Bz Bs By Co - Bg
D D B
1 BeP2 BePS Bet| |c, 1 - Bee™®
By Bg-Do Bg-Dz Bg-Da| |Cs A_(28-Bg)
S — S — e
For extremely large 7y
r— — ——-_T e —
11 1 1 C, - Ag
1 B, B B, C, - By
D D D -
1 e 2 e 3 e % Cqy 1 - A5e28
D D
|1 B 2 Be 3 Bye * C. 1 - Bee®
ot s e L —

OO W I



[ )NUSHUSIE.

APPENDIX B

GENERAL SOLUTION OF THE PERTURBED EQUATIONS

The equations to be solved are:

X JA'sY
u—]-‘— o) + g—er'l - noy = hpe (6n-y - mp_q)
Pr cp(Too"TW)
1 N
Ise mﬁ + 53 - Ny -(6n-1 - mp-1)

with the following boundary conditions:

Vv
at = - U% s (y = 0)

On,w =

m;l,w - 28c (3—%) My, = O for ky =0

My ow = 0 for Ky =+ o
at M=, (¥ = )
fn, = O
ml’l,oo:O

The homogeneous equations are:

)

(76)

(77)

(86)

(87)

(92)
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n_, _
——my + zmy -nm =0 (93)

The two solutions, one for each, of the homogeneous equations (92)
and (93) are obtained by substituting the following infinite series into
the appropriate equations

|
l_l
+
Mg
o
o
=
-

6n(n)
k=1
Lk
mp(n) =1+ ) bxn
k=1

The solutions of the homogeneous equations are expressed by
He,n(n) and Hm,n(n)) and are given by the polynomials (94) and (95)

n
Hom(n) = 1+ ) agn™ (9%)
k=1
where
oo = n(n - 1){n - 2) . i .k(n -k + 1)
(20'(%)
n
Hy n(n) =1 +-}:b2kq2k (95)
k=1
where

b nn-1}n-2)...(n-%k+ 1)
2k 1 k
(20

Now consider a second-order linear equation, in general, with a set of
homogeneous boundary conditions.

fR"(r) + £'R'(r) - gR(r) = -9(r) (B1)
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o

A R(a) + AR'(a) (B2a)

[}
o

AsR(D) + AR'(D) (B2b)

In the above equation, R represents a continuous function of the inde-
pendent variable r, and 1t has continuous first- and second-order
derivatives in the interval (a,b). The functions f, f', and g are also
continuous functions of r 1in the same interval, and f 1is positive.

In the boundary conditions A's are given constants of which A, and A,
are not both 0, and A5 and A, are not both O. Notice that equation (B1)
is written in the self-adjoint form. Let Rg and Rp be two independent
solutions of the homogeneous equation fR" + f'R' - gR = 0. Also consider
that Ry satisfies the homogeneous boundary condition of (B2a), and

Rp that of (B2b), respectively. If @(r) is at least a piecewise con-
tinuous function of r, then, from the theory of integral equations,l the
function

-b
R(r) =J G(r,z)o(z)dz (B3)

a

is the complete solution of eduation (Bl) and it satisfies the given
boundary conditions. The symbol G(r,z) in equation (B3) is a Green's
function and it is constructed in the following manner:

A

- %-Rb(z)Ra(r) for r

G(r,z) = (BlL)

zZ

1\

- %-Ra(z)Rb(r) for r
where
r= f(z)[Ra(z)Ré(z) - R;(Z)Rb(z)] = constant

Now returning to the present case of equations (76) and (77), we see from
the preceding analysis that the first step is to find the four linearly
independent solutions, two for each equation, for the homogeneous equa-
tions (92) and (93). The solutions must be cbtained in such a way that
the two solutions for @ should satisfy the boundary conditions (83)

and (86), respectively, and the two for m should satisfy (84) and (87),
respectively. Note that the boundary conditions for the present case

are all homogeneous.

1See references 20 and 21 for the complete treatment of the subject.
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The general solutions of the homogeneous equations (92) and (93) are
derived by the use of the known two solutions (94%) and (95) as follows:

n
Lo (1) = CaFlg a(n) | S o) ()
0 ,n
K dz

Liy,n(n) = Catlm,n(n) Calm,n(n) (B6)

+
=2 2
L T n(z)]%55

where C's are the constants of integration.

The appropriate application of the boundary conditioms (83) through
(87) to the above general solutions yields the four particular solutions
(100) through (103) in such a way that each particular solution satisfies
one of the boundary conditions. The expressions an represent the
particular solutions of equation (92), and Ppp represent those of equa-
tion (93). The subscripts w and o« refer to the boundary conditions
they satisfy at the wall and at the outer edge of the boundary layer,
respectively. The expressions ap,yw and an,e» and Bn,w and Bn,eos
respectively, are linearly independent of each other and it can be proven
easily by forming the proper Wronskians and showing that they do not
vanish.

The Green's functions for the present case, Ge,n(n,z) and Gy .n(n,z),
are constructed as equations (98) and (99) by use of the form (BE .

Finally, the complete solutions to the problem are derived, in
accordance with equation (B3), as equations (96) and (97).

There is one special case for which a minor modification has to be
made. The expression for Cp given by equation (104) becomes o when
ky = vo/Jv = 0. Therefore, Bn,w(ﬂ) for this case can not be obtained in
the usual way. For this case, however, mp y = O from (84%), and it is seen
that the solution Hm,n(n) satisfies this boundary condition. Therefore,
Hn,n(n) is used instead of Pp,y(n) when ky = vo/NV = O.

The integrals, I, though straightforward, must be integrated numer-
ically except for n = 1. The form of the homogeneous equations (92) and

(93) becomes, when n = 1, identical to an equation derived in refer-
ence 22.

L

L R'(x) + R (x) - R(x) = 0

oW W



TH

The two particular solutions are found in closed form, in the
reference, to satisfy the boundary condition R(-w) = 0 and R(w) = O,
respectively. A little manipulation of these solutions yields the inte-
grated expressions for Ie,l(n) and Iy i(n) as:

n
dz
I, (1) =f
’ o (1+ 2Pr22)2ePrZZ
1 Ui T
== + / erf(\/Prn)]
5
2 [(l + 2Prn2)2ePrn Lpr
a
3
3 and
3
Yl
dz
Inm 1(71) =f
’ 5 (1 + ESczg)zeSczz

=1 n [Z
) 2 [(1 + 2Seq”)® " fse erf(mn)]
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Figure 1l.- Relaxation time for oxygen dissociation and recombination
(obtained directly from ref. 2).
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Figure 3.- Velocity profiles for Couette flow.
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Figure 6.~ Dimensionless temperature and atom-concentration profiles
for ® = 0; 7y = oo
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